1. Ghosh A, Sharma P, Dansana S, Sheeba V. Evidence for co-evolution of masking and circadian phase in Drosophila melanogaster. JOURNAL OF BIOLOGICAL RHYTHMS. In press

  2. Lakshman, A., Kalliyil, A., and Sheeba, V. 2020. Responses of activity rhythms to temperature cues evolve in Drosophila populations selected for divergent timing of eclosion. JOURNAL OF EXPERIMENTAL BIOLOGY, 223(11).

  3. Lakshman, A., Ramakrishnan, A., Priya S., and Sheeba V. 2020. Waveform Plasticity under Entrainment to 12-h T-cycles in Drosophila melanogaster: Behavior, Neuronal Network, and Evolution. JOURNAL OF BIOLOGICAL RHYTHMS, 35(2), p.145-157.

  4. Lakshman, A., Ghosh, A., and Sheeba, V. 2019. Selection for Timing of Eclosion Results in Co-evolution of Temperature Responsiveness in Drosophila melanogaster. JOURNAL OF BIOLOGICAL RHYTHMS, 34(6), p.596-609.

  5. Varma, V., Krishna, S., Srivastava, V., and Sheeba, V. 2019. Accuracy of fruit-fly eclosion rhythms evolves by strengthening circadian gating rather than developmental fine-tuning. BIOLOGY OPEN, 8(8).

  6. Lakshman, A., and Sheeba, V. 2019. RhythmicAlly: Your R and Shiny-Based Open-Source Ally for the Analysis of Biological Rhythms. JOURNAL OF BIOLOGICAL RHYTHMS, 34(5), p.551-561.

  7. Srivastava, M., Varma, V., Abhilash, V., and Sheeba, V. 2019. Circadian Clock Properties and Their Relationships as a Function of Free-Running Period in Drosophila melanogaster. JOURNAL OF BIOLOGICAL RHYTHMS, 34(3), p.231-248.

  8. Srivastava, M., James, A., Varma, V., Sharma, V., and Sheeba, V. 2018. Environmental cycles regulate development time via circadian clock mediated gating of adult emergence. BMC DEVELOPMENTAL BIOLOGY, 18.

  9. Potdar, S., and Sheeba, V. 2018. Wakefulness Is Promoted during Day Time by PDFR Signalling to Dopaminergic Neurons in Drosophila melanogaster. ENEURO, 5(4).

  10. Potdar, S., Daniel, D., Thomas, F., Lall, S., and Sheeba, V. 2018. Sleep deprivation negatively impacts reproductive output in Drosophila melanogaster. JOURNAL OF EXPERIMENTAL BIOLOGY, 221(6).

  11. Prakash, P., Nambiar, A., and Sheeba, V. 2017. Oscillating PDF in termini of circadian pacemaker neurons and synchronous molecular clocks in downstream neurons are not sufficient for sustenance of activity rhythms in constant darkness. PLOS ONE, 12(5).

  12. Das, A., Holmes, T., and Sheeba, V. 2016. dTRPA1 in Non-circadian Neurons Modulates Temperature-dependent Rhythmic Activity in Drosophila melanogaster. JOURNAL OF BIOLOGICAL RHYTHMS, 31(3), p.272-288.

  13. Das, A., Holmes, T., and Sheeba, V. 2015. dTRPA1 Modulates Afternoon Peak of Activity of Fruit Flies Drosophila melanogaster. PLOS ONE, 10(7).

  14. Gogna, N., Singh, V., Sheeba, V., and Dorai, K. 2015. NMR-based investigation of the Drosophila melanogaster metabolome under the influence of daily cycles of light and temperature. MOLECULAR BIOSYSTEMS, 11(12), p.3305-3315.

  15. Prabhakaran, P., and Sheeba, V. 2014. Temperature sensitivity of circadian clocks is conserved across Drosophila species melanogaster, malerkotliana and ananassae. CHRONOBIOLOGY INTERNATIONAL, 31(9), p.1008-1016.

  16. Prabhakaran, P., and Sheeba, V. 2014. Simulating natural light and temperature cycles in the laboratory reveals differential effects on activity/rest rhythm of four Drosophilids. JOURNAL OF COMPARATIVE PHYSIOLOGY A-NEUROETHOLOGY SENSORY NEURAL AND BEHAVIORAL PHYSIOLOGY, 200(10), p.849-862.

  17. Prabhakaran, P., De, J., and Sheeba, V. 2013. Natural Conditions Override Differences in Emergence Rhythm among Closely Related Drosophilids. PLOS ONE, 8(12).

  18. Prabhakaran, P., and Sheeba, V. 2013. Insights into differential activity patterns of drosophilids under semi-natural conditions. JOURNAL OF EXPERIMENTAL BIOLOGY, 216(24), p.4691-4702.

  19. Potdar, S., and Sheeba, V. 2013. Lessons From Sleeping Flies: Insights from Drosophila melanogaster on the Neuronal Circuitry and Importance of Sleep. JOURNAL OF NEUROGENETICS, 27(1-2), p.23-42.

  20. De, J., Varma, V., Saha, S., and Sheeba, V. 2013. Significance of activity peaks in fruit flies, Drosophila melanogaster, under seminatural conditions. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 110(22), p.8984-8989.

  21. Prabhakaran, P., and Sheeba, V. 2012. Sympatric Drosophilid Species melanogaster and ananassae Differ in Temporal Patterns of Activity. JOURNAL OF BIOLOGICAL RHYTHMS, 27(5), p.365-376.

  22. Potdar, S., and Sheeba, V. 2012. Large Ventral Lateral Neurons Determine the Phase of Evening Activity Peak across Photoperiods in Drosophila melanogaster. JOURNAL OF BIOLOGICAL RHYTHMS, 27(4), p.267-279.

  23. Sheeba, V., Fogle, K., and Holmes, T. 2010. Persistence of Morning Anticipation Behavior and High Amplitude Morning Startle Response Following Functional Loss of Small Ventral Lateral Neurons in Drosophila. PLOS ONE, 5(7).

  24. Sheeba, V. 2008. The Drosophila melanogaster circadian pacemaker circuit. JOURNAL OF GENETICS, 87(5), p.485-493.

  25. Sheeba, V., Fogle, K., Kaneko, M., Rashid, Y.T., Sharma, V., and Holmes, T. 2008. Large Ventral Lateral Neurons Modulate Arousal and Sleep in Drosophila. CURRENT BIOLOGY, 18(20), p.1537-1545.

  26. Ayaz, D., Leyssen, M., Koch, M., Yan, M., Sheeba, V., Fogle, K., Holmes, T., and Hassan, B. 2008. Axonal injury and regeneration in the adult brain of Drosophila. JOURNAL OF NEUROSCIENCE, 28(23), p.6010-6021.

  27. Sheeba, V., Gu, H., Sharma, V., O'Dowd, D., and Holmes, T. 2008. Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. JOURNAL OF NEUROPHYSIOLOGY, 99(2), p.976-988.

  28. Sheeba, V., Sharma, V., Gu, H., Chou, D., and Holmes, T. 2008. Pigment dispersing factor-dependent and -independent circadian locomotor behavioral rhythms. JOURNAL OF NEUROSCIENCE, 28(1), p.217-227.

  29. Sheeba, V., Kaneko, M., Sharma, V., and Holmes, T. 2008. The Drosophila circadian pacemaker circuit: Pas de Deux or Tarantella?. CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 43(1), p.37-61.

  30. Nitabach, M., Wu, Y., Sheeba, V., Lemon, W., Strumbos, P., White, B., and Holmes, T. 2006. Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods. JOURNAL OF NEUROSCIENCE, 26(2), p.479-489.

  31. Holmes, T., and Sheeba, V. 2005. Circadian pathway: The other shoe drops. CURRENT BIOLOGY, 15(24), p.R987-R989.

  32. Nitabach, M., Sheeba, V., Vera, D., Blau, J., and Holmes, T. 2005. Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock. JOURNAL OF NEUROBIOLOGY, 62(1), p.1-13.

  33. Sheeba, V., Chandrashekaran, M., Joshi, A., and Sharma, V. 2002. Locomotor activity rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. NATURWISSENSCHAFTEN, 89(11), p.512-514.

  34. Sheeba, V., Chandrashekaran, M., Joshi, A., and Sharma, V. 2002. Developmental plasticity of the locomotor activity rhythm of Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY, 48(1), p.25-32.

  35. Sheeba, V., Chandrashekaran, M., Joshi, A., and Sharma, V. 2001. Persistence of oviposition rhythm in individuals of Drosophila melanogaster reared in an aperiodic environment for several hundred generations. JOURNAL OF EXPERIMENTAL ZOOLOGY, 290(5), p.541-549.

  36. Sheeba, V., Chandrashekaran, M., Joshi, A., and Sharma, V. 2001. A case for multiple oscillators controlling different circadian rhythms in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY, 47(10), p.1217-1225.

  37. Sheeba, V., Nihal, M., Mathew, S., Swamy, N., Chandrashekaran, M., Joshi, A., and Sharma, V. 2001. Does the difference in the timing of eclosion of the fruit fly Drosophila melanogaster reflect differences in the circadian organization?. CHRONOBIOLOGY INTERNATIONAL, 18(4), p.601-612.

  38. Prasad, N., Shakarad, M., Gohil, V., Sheeba, V., Rajamani, M., and Joshi, A. 2000. Evolution of reduced pre-adult viability and larval growth rate in laboratory populations of Drosophila melanogaster selected for shorter development time. GENETICAL RESEARCH, 76(3), p.249-259.

  39. Sheeba, V., Sharma, V., Shubha, K., and Chandrashekaran, A. 2000. The effect of different light regimes on adult life span in Drosophila melanogaster is partly mediated through reproductive output. JOURNAL OF BIOLOGICAL RHYTHMS, 15(5), p.380-392.

  40. Sheeba, V., Rajamani, M., and Joshi, A. 1999. Bimodal distribution of oviposition preference for a novel food medium in Drosophila melanogaster. CURRENT SCIENCE, 77(9), p.1197-1200.

  41. Sheeba, V., Sharma, V., Chandrashekaran, M., and Joshi, A. 1999. Effect of different light regimes on pre-adult fitness in Drosophila melanogaster populations reared in constant light for over six hundred generations. BIOLOGICAL RHYTHM RESEARCH, 30(4), p.424-433.

  42. Sheeba, V., Sharma, V., Chandrashekaran, M., and Joshi, A. 1999. Persistence of eclosion rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. NATURWISSENSCHAFTEN, 86(9), p.448-449.

  43. Sheeba, V., Madhyastha, N., and Joshi, A. 1998. Oviposition preference for novel versus normal food resources in laboratory populations of Drosophila melanogaster. JOURNAL OF BIOSCIENCES, 23(2), p.93-100.